1. Mathematical Expressions
Following tables present tools to declare and manipulate expressions.
Feel++ Keyword  | 
Description  | 
  | 
Variable \(x\)  | 
  | 
Variable \(y\)  | 
  | 
Variable \(z\)  | 
  | 
Constant function equal to \(c\)  | 
You can of course use all current operators ( + - / * ) and the usual following functions:
Feel++ Keyword  | 
Math Object  | 
Description  | 
  | 
\(|f(\overrightarrow{x})|\)  | 
element wise absolute value of \(f\)  | 
  | 
\(\cos(f(\overrightarrow{x}))\)  | 
element wise cos value of \(f\)  | 
  | 
\(\sin(f(\overrightarrow{x}))\)  | 
element wise sin value of \(f\)  | 
  | 
\(\tan(f(\overrightarrow{x}))\)  | 
element wise tan value of \(f\)  | 
  | 
\(\mathrm{acos}(f(\overrightarrow{x}))\)  | 
element wise acos value of \(f\)  | 
  | 
\(\mathrm{asin}(f(\overrightarrow{x}))\)  | 
element wise asin value of \(f\)  | 
  | 
\(\mathrm{atan}(f(\overrightarrow{x}))\)  | 
element wise atan value of \(f\)  | 
  | 
\(\cosh(f(\overrightarrow{x}))\)  | 
element wise cosh value of \(f\)  | 
  | 
\(\sinh(f(\overrightarrow{x}))\)  | 
element wise sinh value of \(f\)  | 
  | 
\(\tanh(f(\overrightarrow{x}))\)  | 
element wise tanh value of \(f\)  | 
  | 
\(\exp(f(\overrightarrow{x}))\)  | 
element wise exp value of \(f\)  | 
  | 
\(\log(f(\overrightarrow{x}))\)  | 
element wise log value of \(f\)  | 
  | 
\(\sqrt{f(\overrightarrow{x})}\)  | 
element wise sqrt value of \(f\)  | 
  | 
\(\lceil{f(\overrightarrow{x})}\rceil\)  | 
element wise ceil of \(f\)  | 
  | 
\(\lfloor{f(\overrightarrow{x})}\rfloor\)  | 
element wise floor of \(f\)  | 
  | 
\(\begin{cases} 1 & \text{if}\ f(\overrightarrow{x}) \geq 0\\-1 & \text{if}\ f(\overrightarrow{x}) < 0\end{cases}\)  | 
element wise sign value of \(f\)  | 
  | 
\(\chi(f(\overrightarrow{x}))=\begin{cases}0 & \text{if}\ f(\overrightarrow{x}) = 0\\1 & \text{if}\ f(\overrightarrow{x}) \neq 0\\\end{cases}\)  | 
element wise boolean test of \(f\)  | 
  | 
random number in \([0,1\)] regenerated at each call  | 
|
  | 
random number in \([lo,hi\)] regenerated at each call  |