1. Norms
Let \(f\) a bounded function on domain \(\Omega\).
1.1. L2 norms
Let \(f \in L^2(\Omega)\) you can evaluate the \(L^2\) norm using the normL2() function:
1.1.1. Interface
  normL2( _range, _expr, _quad, _geomap );
or squared norm:
  normL2Squared( _range, _expr, _quad, _geomap );
Required parameters:
- 
_range= domain of integration - 
_expr= mesurable function 
Optional parameters:
- 
_quad= quadrature to use.- 
Default =
_Q<integer>() 
 - 
 - 
_geomap= type of geometric mapping.- 
Default =
GEOMAP_OPT 
 - 
 
1.1.2. Example
From doc/manual/laplacian/laplacian.cpp
  double L2error =normL2( _range=elements( mesh ),
                          _expr=( idv( u )-g ) );
From doc/manual/stokes/stokes.cpp
meanint main(int argc, char**argv )
{
    Environment env( _argc=argc, _argv=argv,
                     _about=about(_name="mystokes",
                                  _author="Feel++ Consortium",
                                  _email="feelpp-devel@feelpp.org"));
    // create the mesh
    auto mesh = loadMesh(_mesh=new Mesh<Simplex< 2 > > );
    // function space
    auto Vh = THch<2>( mesh );
    // element U=(u,p) in Vh
    auto U = Vh->element();
    auto u = U.element<0>();
    auto p = U.element<1>();
    // left hand side
    auto a = form2( _trial=Vh, _test=Vh );
    a = integrate(_range=elements(mesh),
                  _expr=trace(gradt(u)*trans(grad(u))) );
    a+= integrate(_range=elements(mesh),
                  _expr=-div(u)*idt(p)-divt(u)*id(p));
    auto syms = symbols<2>();
    auto u1 = parse( option(_name="functions.alpha").as<std::string>(), syms );
    auto u2 = parse( option(_name="functions.beta").as<std::string>(), syms );
    matrix u_exact = matrix(2,1);
    u_exact = u1,u2;
    auto p_exact = parse( option(_name="functions.gamma").as<std::string>(), syms );
	auto f = -laplacian( u_exact, syms ) + grad( p_exact, syms ).transpose();
    LOG(INFO) << "rhs : " << f;
    // right hand side
    auto l = form1( _test=Vh );
    l = integrate(_range=elements(mesh),
                  _expr=trans(expr<2,1,5>( f, syms ))*id(u));
    a+=on(_range=boundaryfaces(mesh), _rhs=l, _element=u,
          _expr=expr<2,1,5>(u_exact,syms));
    // solve a(u,v)=l(v)
    a.solve(_rhs=l,_solution=U);
    double mean_p = mean(_range=elements(mesh),_expr=idv(p))(0,0);
    double mean_p_exact = mean(_range=elements(mesh),_expr=expr(p_exact,syms))(0,0);
    double l2error_u = normL2( _range=elements(mesh), _expr=idv(u)-expr<2,1,5>( u_exact, syms ) );
    double l2error_p = normL2( _range=elements(mesh), _expr=idv(p)-mean_p-(expr( p_exact, syms )-mean_p_exact) );
    LOG(INFO) << "L2 error norm u: " << l2error_u;
    LOG(INFO) << "L2 error norm p: " << l2error_p;
    // save results
    auto e = exporter( _mesh=mesh );
    e->add( "u", u );
    e->add( "p", p );
    e->save();
}
1.2. H^1 norm
In the same idea, you can evaluate the H1 norm or semi norm, for any function \(f \in H^1(\Omega)\):
where \(*\) is the scalar product \(\cdot\) when \(f\) is a scalar field and the frobenius scalar product \(:\) when \(f\) is a vector field.
1.2.1. Interface
  normH1( _range, _expr, _grad_expr, _quad, _geomap );
or semi norm:
  normSemiH1( _range, _grad_expr, _quad, _geomap );
Required parameters:
- 
_range= domain of integration - 
_expr= mesurable function - 
_grad_expr= gradient of function (Row vector!) 
Optional parameters:
- 
_quad= quadrature to use.- 
Default =
_Q<integer>() 
 - 
 - 
_geomap= type of geometric mapping.- 
Default =
GEOMAP_OPT 
 - 
 
normH1() returns a float containing the H^1 norm.
1.2.2. Example
With expression:
  auto g = sin(2*pi*Px())*cos(2*pi*Py());
  auto gradg = 2*pi*cos(2* pi*Px())*cos(2*pi*Py())*oneX()
            -2*pi*sin(2*pi*Px())*sin(2*pi*Py())*oneY();
// There gradg is a column vector!
// Use trans() to get a row vector
  double normH1_g = normH1( _range=elements(mesh),
                     _expr=g,
                   _grad_expr=trans(gradg) );
With test or trial function u
  double errorH1 = normH1( _range=elements(mesh),
                    _expr=(u-g),
                  _grad_expr=(gradv(u)-trans(gradg)) );
1.3. \(L^\infty\) norm
You can evaluate the infinity norm using the normLinf() function:
1.3.1. Interface
  normLinf( _range, _expr, _pset, _geomap );
Required parameters:
- 
_range= domain of integration - 
_expr= mesurable function - 
_pset= set of points (e.g. quadrature points) 
Optional parameters:
- 
_geomap= type of geometric mapping.- 
Default =
GEOMAP_OPT 
 - 
 
The normLinf() function returns not only the maximum of the function
over a sampling of each element thanks to the _pset argument but
also the coordinates of the point where the function is maximum. The
returned data structure provides the following interface
- 
value(): return the maximum value - 
operator()(): synonym tovalue() - 
arg(): coordinates of the point where the function is maximum