Quick Starts with singularity
1. Installation Quick Start
Using Feel++ inside Docker is the recommended and fastest way to use Feel++. The Docker chapter is dedicated to Docker and using Feel++ in Docker.
We strongly encourage you to follow these steps if you begin with Feel++ in particular as an end-user.
People who would like to develop with and in Feel++ should read through the remaining sections of this chapter.
2. Usage Start
Start the Docker container feelpp/feelpp-base or feelpp/feelpp-toolboxes as follows
> docker run -it -v $HOME/feel:/feel feelpp/feelpp-toolboxes
| these steps are explained in the chapter on Feel++ containers. | 
Then run e.g. the Quickstart Laplacian that solves the Laplacian problem in Quickstart Laplacian sequential or in Quickstart Laplacian on 4 cores in parallel.
> feelpp_qs_laplacian_2d --config-file Testcases/quickstart/laplacian/feelpp2d/feelpp2d.cfg
The results are stored in Docker in
/feel/qs_laplacian/feelpp2d/np_1/exports/ensightgold/qs_laplacian/
and on your computer
$HOME/feel/qs_laplacian/feelpp2d/np_1/exports/ensightgold/qs_laplacian/
The mesh and solutions can be visualized using e.g. Parariew or Visit.
  | 
> mpirun -np 4 feelpp_qs_laplacian_2d --config-file Testcases/quickstart/laplacian/feelpp2d/feelpp2d.cfg
The results are stored in a simular place as above: just replace np_1 by np_4 in the paths above. The results should look like
  | 
  | 
Solution  | 
Mesh  | 
3. Syntax Start
Here are some excerpts from Quickstart Laplacian that solves the Laplacian problem. It shows some of the features of Feel++ and in particular the domain specific language for Galerkin methods.
First we load the mesh, define the function space define some expressions
    tic();
    auto mesh = loadMesh(_mesh=new Mesh<Simplex<FEELPP_DIM,1>>);
    toc("loadMesh");
    tic();
    auto Vh = Pch<2>( mesh ); (1)
    auto u = Vh->element("u"); (2)
    auto mu = expr(soption(_name="functions.mu")); // diffusion term (3)
    auto f = expr( soption(_name="functions.f"), "f" ); (4)
    auto r_1 = expr( soption(_name="functions.a"), "a" ); // Robin left hand side expression (5)
    auto r_2 = expr( soption(_name="functions.b"), "b" ); // Robin right hand side expression (6)
    auto n = expr( soption(_name="functions.c"), "c" ); // Neumann expression (7)
    auto solution = expr( checker().solution(), "solution" ); (8)
    auto g = checker().check()?solution:expr( soption(_name="functions.g"), "g" ); (9)
    auto v = Vh->element( g, "g" ); (3)
    toc("Vh");
Second we define the linear and bilinear forms to solve the problem
    tic();
    auto l = form1( _test=Vh );
    l = integrate(_range=elements(mesh),
                  _expr=f*id(v));
    l+=integrate(_range=markedfaces(mesh,"Robin"), _expr=r_2*id(v));
    l+=integrate(_range=markedfaces(mesh,"Neumann"), _expr=n*id(v));
    toc("l");
    tic();
    auto a = form2( _trial=Vh, _test=Vh);
    tic();
    a = integrate(_range=elements(mesh),
                  _expr=mu*inner(gradt(u),grad(v)) );
    toc("a");
    a+=integrate(_range=markedfaces(mesh,"Robin"), _expr=r_1*idt(u)*id(v));
    a+=on(_range=markedfaces(mesh,"Dirichlet"), _rhs=l, _element=u, _expr=g );
    //! if no markers Robin Neumann or Dirichlet are present in the mesh then
    //! impose Dirichlet boundary conditions over the entire boundary
    if ( !mesh->hasAnyMarker({"Robin", "Neumann","Dirichlet"}) )
        a+=on(_range=boundaryfaces(mesh), _rhs=l, _element=u, _expr=g );
    toc("a");
More explanations are available in the Laplacian example.

